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Abstract

With the increasing popularity of practical vision sys-

tems and smart phones, text detection in natural scenes be-

comes a critical yet challenging task. Most existing meth-

ods have focused on detecting horizontal or near-horizontal

texts. In this paper, we propose a system which detects texts

of arbitrary orientations in natural images. Our algorithm

is equipped with a two-level classification scheme and two

sets of features specially designed for capturing both the

intrinsic characteristics of texts. To better evaluate our al-

gorithm and compare it with other competing algorithms,

we generate a new dataset, which includes various texts

in diverse real-world scenarios; we also propose a proto-

col for performance evaluation. Experiments on benchmark

datasets and the proposed dataset demonstrate that our al-

gorithm compares favorably with the state-of-the-art algo-

rithms when handling horizontal texts and achieves signifi-

cantly enhanced performance on texts of arbitrary orienta-

tions in complex natural scenes.

1. Introduction

The great success of smart phones and large demands in

content-based image search/understanding have made text

detection a crucial task in human computer interaction. It

is desirable to build practical systems that are robust and

fast enough to deal with natural scenes of various condi-

tions; as shown in Fig. 1, we want to detect texts of large

variations in language, font, color, scale and orientation in

complex scenes. Although text detection has been studied

extensively in the past [19, 15], the problem remains un-

solved. The difficulties mainly come from two aspects: (1)

the diversity of the texts and (2) the complexity of the back-

grounds. On one hand, text is a high level concept but better

defined than the generic objects [8]; on the other hand, re-

peated patterns (such as windows and barriers) and random

clutters (such as grasses and leaves) may be similar to texts,

and thus lead to potential false positives.

As our survey of related work shows below, most ex-

Figure 1. Detected texts in natural images.

isting methods [16, 7, 22] have focused on detecting hori-

zontal or near-horizontal texts. Detecting texts of arbitrary

orientations in complex natural images has received much

less attentions and remains a challenge for most practical

systems. In this work, we make an effort to build an ef-

fective and practical detection system for texts of arbitrary

orientations in complex natural scenes.

When directly applied to detect texts of arbitrary orienta-

tions, conventional features (such as SWT used in [7]) that

are primarily designed for horizontal texts would lead to

significant false positives. In this paper, we introduce two

additional sets of rotation invariant features for text detec-

tion. To further reduce false positives produced by these

low-level features, we have also designed a two-level classi-

fication scheme that can effectively discriminate texts from

non-texts. Hence, combining the strengths of specially de-

signed features and discriminatively trained classifiers, our

system is able to effectively detect texts of arbitrary orien-

tations but produce fewer false positives.

To evaluate the effectiveness of our system, we have con-

ducted extensive experiments on both conventional and new

image datasets. Compared with the state-of-the-art text de-

tection algorithms, our system performs competitively in

the conventional setting of horizontal texts. We have also

tested our system on a very challenging large dataset of 500

natural images containing texts of various orientations in

complex backgrounds (see Fig. 8 (a)). On this dataset, our

system works significantly better than any of the existing

systems, with an F-measure about 0.6, more than twice that

of the closest competitor.
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2. Related Work

There have been a large number of methods dealing with

text detection in natural images and videos [18, 16, 30, 27,

22, 26]. Comprehensive surveys can be found in [15, 19].

Existing approaches to text detection can be roughly di-

vided into three categories: texture-based methods, region-

based methods, and hybrid methods. Texture-based meth-

ods [16, 6, 10] treat texts as a special type of texture and

make use of their properties, such as local intensities, fil-

ter responses and wavelet coefficients. These methods are

computation demanding as all locations and scales are ex-

haustively scanned. Moreover, these algorithms mostly de-

tect horizontal texts. Region-based methods [14, 7, 22]

first extract candidate text regions through edge detection

or clustering and then eliminate non-text regions using vari-

ous heuristic rules. The third category, hybrid methods [23],

is a mixture of texture-based and region-based methods.

Most existing algorithms, e.g. [23, 7], have focused on

detecting horizontal texts. In this paper, we address the

problem of detecting texts of large variations in natural im-

ages, which has great practical importance but has not been

well studied. In [29, 26], methods that can detect text strings

of arbitrary directions are proposed but they have a large set

of rules and parameters; how general and applicable they

are in dealing with scenes of large variation is unclear.

We observe two-sides aspects about the current text de-

tection algorithms: (1) methods built on heavy learning

(nearly black-box) [6] by training classifiers on a large

amount of data reach certain but limited level of success

(system [6] obtained from the authors produces reason-

able results on horizontal English texts but has poor per-

formances in the general cases); (2) systems based on smart

features, such as Stroke Width Transform (SWT) [7], are

robust to variations in texts but they involve many hand tun-

ings and are still far from producing all satisfactory results,

especially for non-horizontal texts.

In this paper, we adopt SWT and also design various

features that are intrinsic to texts and robust to variations;

a two-level classification scheme is devised to moderately

utilize training to remove sensitive manual parameter tun-

ing. We observe significant improvement over the existing

approaches in dealing with real-world scenes.

Though widely used in the community, the ICDAR

datasets [20, 24] only contain horizontal English texts.

In [29], a dataset with texts of different directions is re-

leased, but it includes only 89 images without enough di-

versity in the texts and backgrounds. Here we collect a new

dataset with 500 images of indoor and outdoor scenes. In

addition, the evaluation methods used in [13] and the IC-

DAR competitions [21, 20] are designed for horizontal texts

only. Hence, we use a different protocol that is suitable to

handle texts of arbitrary orientations (see Sec. 4).

Figure 2. Pipeline of the proposed approach.

3. Methodology

In this section, we present the details of the proposed

algorithm. Specifically, the pipeline of the algorithm will

be presented in Sec. 3.1 and the details of the features will

be described in Sec. 3.2.

3.1. Algorithm Pipeline

3.1.1 overview

The proposed algorithm consists of four stages: (1) com-

ponent extraction, (2) component analysis, (3) candidate

linking, and (4) chain analysis, which can be further cat-

egorized into two procedures, bottom-up grouping and top-

down pruning, as shown in Fig. 2. In the bottom-up group-

ing procedure, pixels first form connected components and

later these connected components are aggregated to form

chains; in the top-down pruning procedure non-text compo-

nents and chains are successively identified and eliminated.

Component extraction: At this stage, edge detection is

performed on the original image and the edge map is input

to SWT [7] module to produce an SWT image. Neighbor-

ing pixels in the SWT image are grouped together to form

connected components using a simple association rule.

Component analysis: Many components extracted at the

component extraction stage are not parts of texts. The

component analysis stage therefore identifies and filters out

those non-text components by a trained classifier.

Candidate linking: The remaining components are taken

as character candidates1. The first step of the candidate link-

ing stage is to link the character candidates into pairs. Two

adjacent candidates are grouped into a pair if they have sim-

ilar geometric properties and colors. The candidate pairs are

then aggregated into chains in a recursive fashion.

Chain analysis: At the chain analysis stage, the chains de-

termined at the former stage are verified by a chain level

1In fact, components do not necessarily correspond to characters, be-

cause a single character in some languages may consist of several strokes;

however, we still call them characters (or character candidates) hereafter

for simplicity.
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Table 1. Basic component properties and their valid ranges.

Property Definition Range

width variation WV (c) =
σ(c)

µ(c)
[0, 1]

aspect ratio AR(c) = min{
w(c)

h(c)
,
h(c)

w(c)
} [0.1, 1]

occupation ratio OR(c) =
q

w(c) ∗ h(c)
[0.1, 1]

classifier. The chains with low classification scores (proba-

bilities) are discarded. The chains may be in any direction,

so a candidate might belong to multiple chains; the inter-

pretation step is aimed to dispel this ambiguity. The chains

that pass this stage are the final detected texts.

3.1.2 Component Extraction

To extract connected components from the image, SWT [7]

is adopted for its effectiveness and efficiency. In addition,

it provides a way to discover connected components from

edge map directly. We use Canny edge detector [5] to

produce an edge map (Fig. 3 (b)) from the original image

(Fig. 3 (a)). SWT is a local image operator which com-

putes per pixel width of the most likely stroke containing

the pixel. See [7] for details. The resulting SWT image is

shown in Fig. 3 (c).

The next step of this stage is to group the pixels in the

SWT image into connected components. The pixels are as-

sociated using a simple rule that the ratio of SWT values of

neighboring pixels is less than 3.0. The connected compo-

nents are shown in Fig. 3 (d). Note the red rectangles in the

image. Each rectangle contains a connected component.

3.1.3 Component Analysis

The purpose of component analysis is to identify and elim-

inate the connected components that are unlikely parts of

texts. Towards this end, we devise a two-layer filtering

mechanism. The first layer is a filter consists of a set of

heuristic rules. This filter runs on a collection of statis-

tical and geometric properties of components, which are

very fast to compute. For a connected component c with

q foreground pixels (black pixels in the SWT image), we

first compute its bounding box bb(c) (its width and height

are denoted by w(c) and h(c), respectively) and the mean

as well as standard deviation of the stroke widths, µ(c) and

σ(c). The definitions of these basic properties and the cor-

responding valid ranges are summarized in Tab. 1.

The components with one or more invalid properties will

be taken as non-text regions and discarded. This prelimi-

nary filter proves to be both effective and efficient. A large

portion of obvious non-text regions are eliminated after this

step. Notice the difference between Fig. 3 (d) and Fig. 3 (e).

The second layer is a classifier trained to identify and re-

ject the non-text components that are hard to remove with

the preliminary filter. A collection of component level fea-

tures, which capture the differences of geometric and textu-

ral properties between text components and non-text com-

Figure 4. Component characteristics. The green points are the centers of

the components. The radii of the pink circles represent their characteristic

scales while the yellow lines indicate the major orientations. The two im-

ages, which contain the same text line, are taken from different viewpoints

and distances.

ponents, are used to train this classifier. The criteria for

feature design are: scale invariance, rotation invariance and

low computational cost. To meet these criteria, we propose

to estimate the center, characteristic scale and major ori-

entation of each component (Fig. 4) before computing the

component level features. Based on these characteristics,

features that are both effective and computational efficient

can be obtained. The details of these component level fea-

tures are discussed in Sec. 3.2.1.

For a component c, the barycenter o(c), major axis L(c),
minor axis l(c), and orientation θ(c) are estimated using

Camshift algorithm [3] by taking the SWT image of com-

ponent c as distribution map. The center, characteristic

scale and major orientation of component c are defined as:

O(c) = o(c), S(c) = L(c) + l(c), and Θ(c) = θ(c).

These characteristics are invariant to translation, scale

and rotation to some degree (Fig. 4). As we will explain

in Sec. 3.2.1, this is the key to the scale and rotation invari-

ance of the component level features.

We train a component level classifier using the compo-

nent level features. Random Forest [4] is chosen as the

strong classifier. The component level classifier is the first

level of the two-level classification scheme. The probabil-

ity of component c, p1(c), is the fraction of votes for the

positive class (text) from the trees. The components whose

probabilities are lower than a threshold T1 are eliminated

and the remaining components are considered as character

candidates (Fig. 3 (f)).

3.1.4 Candidate Linking

The character candidates are aggregated into chains at this

stage. This stage also serves as a filtering step because the

candidate characters cannot be linked into chains are taken

as components casually formed by noises or background

clutters, and thus are discarded.

Firstly, character candidates are linked into pairs. In [7],

whether two candidates can be linked into a pair is deter-

mined based on the heights and widths of their bounding

boxes. However, bounding boxes of candidates are not ro-

tation invariant, so we use their characteristic scales instead.

If two candidates have similar stroke widths (ratio between

the mean stroke widths is less than 2.0), similar sizes (ra-

tio between their characteristic scales does not exceed 2.5),

similar colors and are close enough (distance between them
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Figure 3. Text detection process. See text for details.

is less than two times the sum of their characteristic scales),

they are labeled as a pair. Unlike [7], which only considers

horizontal linkings, the proposed algorithm allows linkings

of arbitrary directions. This endows the system with the

ability of detecting texts of arbitrary orientations, not lim-

ited to horizontal texts (see Fig. 1). Note that a character

candidate may belong to several pairs.

Next, a greedy hierarchical agglomerative clustering [12]

method is applied to aggregate the pairs into candidate

chains. Initially, each pair constitutes a chain. Then the sim-

ilarity between each couple of chains that share at least one

common candidate and have similar orientations is com-

puted; chains with the highest similarity are merged to-

gether to form a new chain. The orientation consistency

so(C1, C2) and population consistency sp(C1, C2) between

two chains C1 and C2, which share at least one common

candidate, are defined as:

so(C1, C2) =

{

1−
γ(C1, C2)

π/2
if γ(C1, C2) ≤

π

8
0 otherwise

, (1)

and

sp(C1, C2) =

{

1−
|nC1

− nC2
|

|nC1
+ nC2

|
if γ(C1, C2) ≤

π

8
0 otherwise

, (2)

where γ(C1, C2) is the included angle of C1 and C2 while

nC1
and nC2

are the candidate numbers of C1 and C2. The

similarity between two chains C1 and C2 is:

s(C1, C2) = ω · so(C1, C2) + (1 − ω) · sp(C1, C2), (3)

where ω ∈ [0, 1] is a control parameter. ω is set to 0.5 to

give equal weights to so(C1, C2) and sp(C1, C2). Accord-

ing to this similarity definition, the chains with proximal

sizes and orientations are merged with priority. This merg-

ing process proceeds until no chains can be merged.

At last, the character candidates not belonging to any

chain are discarded. The candidate chains after aggrega-

tion are shown in Fig. 3 (g). Each green line represents a

candidate chain.

3.1.5 Chain Analysis

The candidate chains formed at the previous stage might in-

clude false positives that are random combinations of scat-

tered background clutters (such as leaves and grasses) and

repeated patterns (such as bricks and windows). To elimi-

nate these false positives, a chain level classifier is trained

using the chain level features (Sec. 3.2.2). Random For-

est [4] is again used. The chain level classifier is the second

level of the two-level classification scheme. The probability

of chain C, p2(C), is the fraction of votes for the positive

class (text) from the trees. The chains with probabilities

lower than a threshold T2 are eliminated.

To make better decisions, the total probability of each

chain is also calculated. For a chain C with n candi-

dates ci, i = 1, 2, · · · , n, the total probability is defined as:

p(C) = (

∑n

i=1
p1(ci)

n
+p2(C))/2. The chains whose total

probabilities are lower than a threshold T are discarded.

As texts of arbitrary orientations are considered, the re-

maining chains may be in any direction. Therefore, a can-

didate might belong to multiple chains. For example, in

Fig. 3 (h) the character ‘P’ in the first line is linked in three

chains (note the green lines). In reality, however, a char-

acter is unlikely to belong to multiple text lines. If several

chains compete for the same candidate, only the chain with

the highest total probability will survive (note the difference

between Fig. 3 (h) and Fig. 3 (i)).

The survived chains are outputted by the system as de-

tected texts (Fig. 3 (j)). For each detected text, its orienta-

tion is calculated through linear least squares [12] using the

centers of the characters; its minimum area rectangle [9] is

estimated using the orientation and the bounding boxes of
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Figure 5. Templates and calculation of scalable rotative descriptors. (a)

Two templates used for computing the descriptors. The radius space and

angle space are partitioned evenly in a coarse-to-fine manner. The red

arrows indicate the reference orientations of the templates. (b) Component

and its characteristics. (c)(d)(e) Calculation of contour shape, edge shape

and occupation ratio. See text for details.

the characters. Word partition, which divides text lines into

separate words, is also implemented in the proposed algo-

rithm; but it is not shown in Fig. 3 since the general task of

text detection does not require this step.

The whole algorithm is performed twice to handle both

bright text on dark background and dark text on bright back-

ground, once along the gradient direction and once along

the inverse direction. The results of two passes are fused

to make final decisions. For clarity, only the results of one

pass are presented in Fig. 3.

3.2. Feature Design

We design two collections of features, component level

features and chain level features, for classifying text and

non-text, based on the observation that it is the median de-

gree of regularities of text rather than particular color or

shape that distinguish it from non-text, which usually has

either low degree (random clutters) or high degree (repeated

patterns) of regularities. At character level, the regularities

of text come from nearly constant width and texturelessness

of strokes, and piecewise smoothness of stroke boundaries;

at line level, the regularities of text are similar colors, sizes,

orientations and structures of characters, and nearly con-

stant spacing between consecutive characters.

3.2.1 Component Level Features

Inspired by Shape Context [1] and Feature Context [28], we

devise two templates (Fig. 5 (a)) to capture the regularities

of each component in coarse and fine granularity, respec-

tively. The radius and orientation of the templates are not

stationary, but adaptive to the component. When comput-

ing descriptors for a component, each template is placed at

the center and rotated to align with the major orientation of

the component; the radius is set to the characteristic scale

of the component. Different cues from the sectors are en-

coded and concatenated into histograms. In this paper, the

following cues are considered for each sector:

– Contour shape [11]. Contour shape is a histogram

of oriented gradients. The gradients are computed on the

component contour (Fig. 5 (c)).

– Edge shape [11]. Edge shape is also a histogram of

oriented gradients; but the gradients are computed at all the

pixels in the sector (Fig. 5 (d)).

– Occupation ratio. Occupation ratio is defined as the

ratio between the number of the foreground pixels of the

component within the sector and the sector area (Fig. 5 (e)).

To achieve rotation invariance, the gradient orientations

are rotated by an angle Θ(c), before computing contour

shape and edge shape. Then, the gradient orientations are

normalized to the range [0, π]. 6 orientation bins are used

for computing histograms of contour shape and edge shape,

to cope with different fonts and local deformations. For

each cue, the signals computed in all the sectors of all the

templates are concatenated to form a descriptor. We call

these descriptors scalable rotative descriptors, because they

are computed based on templates that are scalable and rota-

tive. Scalable rotative descriptors are similar to PHOG [2],

as they both adopt spatial pyramid representation [17].

Different from the templates used for computing PHOG,

our templates are circular and their scale and orientation are

adaptive to the component being described. This is the key

to the scale and rotation invariance of these descriptors. We

found through experiments (not shown in this paper) that

using finer templates can slightly improve the performance,

but will largely increase the computational burden.

Another three types of features are also considered:

– Axial ratio. Axial ratio is computed by dividing

the major axis of the component c with its minor axis:

XR(c) = L(c)/l(c).
– Width variation. This feature is the same as defined

in Tab. 1.

– Density. The density of component c is defined as

the ratio between its pixel number q and characteristic area

(here the characteristic area is π · S2(c), not the area of the

bounding box): D(c) = q/(π · S2(c)).

3.2.2 Chain Level Features

Eleven types of chain level features are designed to discrim-

inate text lines from false positives (mostly repeated pat-

terns and random clutters) that cannot be distinguished by

the component level features.

For a candidate chain C with n (n ≥ 2) candidates

ci, i = 1, 2, . . . , n, the features are defined as below:

– Candidate count. This feature is adopted based on the

observation that false positives usually have very few (ran-

dom clutters) or too many (repeated patterns) candidates.

– Average probability. The probabilities given by the

component level classifier are reliable. This feature is the

average of all the probabilities (p1(ci), i = 1, 2, . . . , n) of

the candidates belonging to C.

– Average turning angle. Most texts present in linear

form, so for a text line the mean of the turning angles at the

interior characters (τ(ci), i = 2, 3, . . . , n− 1) is very small;
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however, for random clutters this property will not hold.

τ(ci) is the included angle between the line O(ci−1)O(ci)
and O(ci)O(ci+1).

– Size variation. In most cases characters in a text line

have approximately equal sizes; but it’s not that case for

random clutters. The size of each component is measured

by its characteristic scale S(ci).

– Distance variation. Another property of text is that

characters in a text line are distributed uniformly, i.e. the

distances between consecutive characters have small devia-

tion. The distance between two consecutive components is

the distance of their centers O(ci−1) and O(ci).

– Average direction bias. For most text lines, the major

orientations of the characters are nearly perpendicular to the

major orientation of the text line.

– Average axial ratio. Some repeated patterns (e.g. bar-

riers) that are not texts consist of long and thin components,

this feature can help differentiate them from true texts.

– Average density. On the contrary, other repeated pat-

terns (e.g. bricks) consist of short and fat components, this

feature can be used to eliminate this kind of false positives.

– Average width variation. False positives formed by

foliage usually have varying widths while texts have con-

stant widths. This feature is defined as the mean of all the

width variation values of the candidates.

– Average color self-similarity. Characters in a text

line usually have similar but not identical color distribu-

tions with each other; yet in false positive chains, color

self-similarities [25] of the candidates are either too high

(repeated patterns) or too low (random clutters). The color

similarity cs(x, y) is defined as the cosine similarity of the

color histograms of the two candidates x and y.

– Average structure self-similarity. Likewise, charac-

ters in a text line have similar structure with each other

while false positives usually have almost the same structure

(repeated patterns) or diverse structures (random clutters).

The structure similarity ss(x, y) is defined as the cosine

similarity of the edge shape descriptors of the two compo-

nents x and y.

4. Dataset and Evaluation Protocol

In this section, we introduce a dataset for evaluating text

detection algorithms, which contains images of real-world

complexity; a new evaluation method is also proposed.

Although widely used in the community, the ICDAR

dataset [21, 20] has two major drawbacks. First, most of

the text lines (or single characters) in the ICDAR dataset

are horizontal. In real scenarios, however, text may appear

in any orientation. The second drawback is that all the text

lines or characters in this dataset are in English. These two

shortcomings are also pointed out in [23, 29]. In this work,

we generate a new multilingual image dataset with horizon-

tal as well as skewed and slant texts. We name this dataset

Figure 6. Ground truth generation and overlap ratio calculation. (a) Hu-

man annotations. The annotators are required to bound each text line using

a four-vertex polygon (red dots and yellow lines). (b) Ground truth rect-

angles (green). The ground truth rectangle is generated automatically by

fitting a minimum area rectangle using the polygon. (c) Calculation of

overlap ratio between detection rectangle and ground truth rectangle.

MSRA Text Detection 500 Database (MSRA-TD500)2, be-

cause it contains 500 natural images in total. These im-

ages are taken from indoor (office and mall) and outdoor

(street) scenes using a packet camera. The indoor images

are mainly signs, doorplates and caution plates while the

outdoor images are mostly guide boards and billboards in

complex background. The resolutions of the images vary

from 1296 × 864 to 1920 × 1280. Some typical images

from this dataset are shown in Fig. 8 (a).

This dataset is very challenging because of both the di-

versity of the texts and the complexity of the backgrounds in

the images. The texts may be in different languages (Chi-

nese, English or mixture of both), fonts, sizes, colors and

orientations. The backgrounds may contain vegetation (e.g.

trees and grasses) and repeated patterns (e.g. windows and

bricks), which are not so distinguishable from text.

The dataset is divided into two parts: training set and

test set. The training set contains 300 images randomly

selected from the original dataset and the rest 200 images

constitute the test set. All the images in this dataset are

fully annotated. The basic unit in this dataset is text line

rather than word, which is used in the ICDAR dataset, be-

cause it is hard to partition Chinese text lines into individual

words based on their spacings; even for English text lines,

it is non-trivial to perform word partition without high level

information. The procedure of ground truth generation is

shown in Fig. 6 (a) and (b).

Minimum area rectangles [9] are used in our protocol be-

cause they (green rectangles in Fig. 6 (b)) are much tighter

than axis-aligned rectangles (red rectangles in Fig. 6 (b)).

However, a problem imposed by using minimum area rect-

angles is that it is difficult to judge whether a text line is

correctly detected. As shown in Fig. 6 (c), it is not trivial

to directly compute the overlap ratio between the estimated

rectangle D and the ground truth rectangle G. Instead, we

compute the overlap ratio using axis-aligned rectangles G′

and D′, which are obtained by rotating G and D round

their centers CG and CD , respectively. The overlap ratio

between G and D is defined as: m(G,D) =
A(G′ ∩D′)

A(G′ ∪D′)
where A(G′ ∩D′) and A(G′ ∪D′) denote the areas of the

intersection and union of G′ and D′. Similar to the evalu-

2http : //users.loni.ucla.edu/∼ztu/Download front.htm
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Figure 7. Detected texts in images from the ICDAR test set.

ation method for the PASCAL object detection task [8], in

our protocol detections are considered true or false positives

based on the overlap ratio between the estimated minimum

area rectangles and the ground truth rectangles. If the in-

cluded angle of the estimated rectangle and the ground truth

rectangle is less than π/8 and their overlap ratio exceeds

0.5, the estimated rectangle is considered a correct detec-

tion. Multiple detections of the same text line are taken

as false positives. The definitions of precision and recall

are: precision = |TP |/|E|, recall = |TP |/|T | where

TP is the set of true positive detections while E and T
are the sets of estimated rectangles and ground truth rectan-

gles. The F-measure, which is a single measure of algorithm

performance, is a combination of the two above measures:

f = 2 · precision · recall/(precision+ recall).

5. Experiments

We implemented the proposed algorithm and trained two

text detectors, one on the mixture of the ICDAR training set

and the training set of the proposed dataset, and the other

only on the ICDAR training set. These two text detectors

are denoted by TD-Mixture and TD-ICDAR, respectively.

200 trees are used for training the component level classi-

fier and 100 trees for the chain level classifier. The threshold

values are: T1 = 0.1, T2 = 0.3 and T = 0.4. We found em-

pirically that the text detectors under this parameter setting

work well for all the datasets used in this paper.

In order to compare the proposed algorithm with exist-

ing methods, we evaluated the algorithm on the standard

benchmark ICDAR dataset [21, 20]. The ICDAR dataset

contains 509 fully annotated text images. 258 images from

the dataset are used for training and 251 for testing.

Some text detection examples of the proposed algorithm

are presented in Fig. 7. The algorithm can handle several

types of challenging scenarios, e.g. variations in text font,

color and size, as well as repeated patterns and background

clutters. The quantitative comparisons of different meth-

ods evaluated on the ICDAR test set are shown in Tab. 2.

Our algorithm compares favorably with the state-of-the-art

algorithms when dealing with horizontal texts.

Besides the ICDAR dataset, we also tested the proposed

algorithm and the systems of Chen et al. [6] and Epshtein

et al. [7] on the proposed dataset. Examples of our algo-

rithm on this dataset are shown in Fig. 8 (a). Our algorithm

is able to detect texts of large variation in natural scenes,

Table 2. Performances of different text detection methods evaluated on

the ICDAR test set.

Algorithm Precision Recall F-measure

TD-Mixture 0.69 0.66 0.67

TD-ICDAR 0.68 0.66 0.66

Epshtein et al. [7] 0.73 0.60 0.66

Yi et al. [29] 0.71 0.62 0.62

Becker et al. [20] 0.62 0.67 0.62

Chen et al. [6] 0.60 0.60 0.58

Zhu et al. [20] 0.33 0.40 0.33

Kim et al. [20] 0.22 0.28 0.22

Ezaki et al. [20] 0.18 0.36 0.22

Table 3. Performances of different text detection methods evaluated on

the proposed dataset.

Algorithm Precision Recall F-measure

TD-Mixture 0.63 0.63 0.60

TD-ICDAR 0.53 0.52 0.50

Epshtein et al. [7] 0.25 0.25 0.25

Chen et al. [6] 0.05 0.05 0.05

Table 4. Performances of different text detection methods evaluated on

the Oriented Scene Text Database (OSTD) [29].

Algorithm Precision Recall F-measure

TD-Mixture 0.77 0.73 0.74

TD-ICDAR 0.71 0.69 0.68

Yi et al. [29] 0.56 0.64 0.55

Epshtein et al. [7] 0.37 0.32 0.32

Chen et al. [6] 0.07 0.06 0.06

with the presence of vegetation and buildings. The images

in the last row of Fig. 8 (a) are some typical cases where

our algorithms failed to detect the texts or gave false posi-

tives. The misses (pink rectangles) are mainly due to strong

highlights, blur and low resolution; the false positives (red

rectangles) are usually caused by windows, trees, or signs

that are very alike text.

The performances are measured using the proposed eval-

uation protocol and shown in Tab. 3. Our algorithm

achieves significantly enhanced performance when detect-

ing texts of arbitrary orientations. The performances of

other competing algorithms are not presented because of

unavailability of their executables. The average process-

ing time of our algorithm on this dataset is 7.2s and that of

Epshtein et al. is 6s (both tested on a 2.53GHz CPU with-

out optimization). Our algorithm is a bit slower, but with

the advantage of being able to detect multi-oriented texts.

In [29], a dataset called Oriented Scene Text Database

(OSTD), which contains texts of various orientations, is re-

leased. This dataset contains 89 images of logos, indoor

scenes and street views. We perform text detection on all

the images in this dataset. The quantitative results are pre-

sented in Tab. 4. Our method outperforms [29] on the Ori-

ented Scene Text Database (OSTD), with an improvement

of 0.19 in F-measure.
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Figure 8. (a) Detected texts in images from the proposed dataset. Yellow rectangles: true positives, pink rectangles: false negatives, red rectangles: false

positives. Best viewed in color. (b) Detected texts in various languages in images collected from the internet. Note that the texts are detected in full images.

We only show cropped sub images because of space limitation.

From Tab. 3 and Tab. 4, we observe that even TD-

ICDAR (only trained on horizontal texts) achieves much

better performance than other methods on non-horizontal

texts. It demonstrates the effectiveness of the proposed fea-

tures. Fig. 8 (b) shows some detected texts in various lan-

guages, including both oriental and western languages, such

as Japanese, Korean, Arabic, Greek, and Russian. Though

our text detector is only trained on Chinese and English

texts, it can effortlessly generalize to texts in different lan-

guages. It indicates that the proposed algorithm is quite

general and it can serve as a multilingual text detector if

sufficient training examples are available.

6. Conclusions and Future Work

We have presented a text detection system that detects

texts of arbitrary directions in natural images. Our sys-

tem compares favorably with the state-of-the-art algorithms

when handling horizontal texts and achieves significantly

enhanced performance on texts of arbitrary orientations in

complex natural scenes.

The component level features are actually character de-

scriptors that can distinguish among different characters,

thus they can be adopted to recognize characters. We plan to

make use of this property and develop an unified framework

for text detection and character recognition in the future.
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